The use of GPS data at T-T Zone for the verification of the recent terrestrial reference frames considering possible geodynamic processes

Walyeldeen Godah
University of Khartoum, AL-Jama’a St., 321-11115 Khartoum, Sudan
Institute of Geodesy and Cartography, 27 Modzelewskiego St., 02-679 Warsaw, Poland
Tel.: +48 22 3291903, Fax: +48 22 3291950, E-mail: w-hassan@igik.edu.pl

Jan Krynski
Institute of Geodesy and Cartography, 27 Modzelewskiego St., 02-679 Warsaw, Poland
Tel.: +48 22 3291904, Fax: +48 22 3291950, E-mail: krynski@igik.edu.pl

Jan Cisak
Institute of Geodesy and Cartography, 27 Modzelewskiego St., 02-679 Warsaw, Poland
Tel.: +48 22 3291908, Fax: +48 22 3291950, E-mail: jan.cisak@igik.edu.pl

Abstract. The interpretation of the geodynamic phenomena with the use of GPS observations strongly depends on the quality of the terrestrial reference frame. The aim of this contribution is to verify station velocities from recent ITRF/ETRF solutions as well as to evaluate the possible geodynamic processes by using long time series of GPS data from four permanent GNSS stations operating in T-T zone. The components of four baselines were calculated with the use of the Bernese v.5.0 GPS software using GPS observation data from 2004–2012. Time variations of baseline components and baseline length were analysed and their linear trends were estimated by applying linear regression analysis. The obtained results have indicated that the variations are within the range from –0.2 to 0.3 mm/year in X–component, from –0.6 to –0.3 mm/year in Y–component, from –0.2 to 0.2 mm/year in Z–component and from –0.2 to 0.6 mm/year for the baseline length. The estimated linear trends of baselines components variations fit substantially better to the respective ones derived from ITRF2008/ETRF2000 (R8) than to the ones from ITRF2005/ETRF2000 (R5).

Keywords: Teisseyre-Tornquist zone, geodynamics, reference frame, GPS, time variations, linear trend

Received: 9 April 2013 /Accepted: 17 May 2013

1. Introduction

Accurate and reliable terrestrial reference frame is extremely important in studying geodynamic processes using space-geodetic techniques. Since 1988, the International Terrestrial Reference Frame (ITRF) has been released and updated regularly, with most recent two releases being ITRF2005 (Altamimi et al., 2007) and ITRF2008 (Altamimi et al., 2011). Beside the ITRF, the IAG Sub-commission for the European Reference Frame (EUREF) has released the European Terrestrial Reference Frame (ETRF). The ETRF89 was defined as corresponding to the ITRF89 at epoch 1989.0, ETRF2000 (R5) to ITRF2005 and ETRF2000 (R08) to ITRF2008 (Boucher and Altamimi, 2011).

Through the past years, many studies were performed to assess the accuracy of the terrestrial reference frames (TRF), e.g. (Altamimi et al., 2011; Collilieux et al., 2011; Wu et al., 2011). As a common conclusion they have indicated that the accuracy of the origin and scale of the TRF are one of the main factors limiting the determination of accurate velocities of the GNSS sites. Consequently, the evaluated accuracy of these velocities differs from site to site.

In the area of Poland, in particular, in the Teisseyre-Tornquist zone (T-T zone) area (Fig. 1), several
studies were devoted to examine the crustal deformation and the existence of geodynamic processes by using various geodetic tools and methods. For example, daily reprocessed solutions from a few EPN (EUREF Permanent Network) stations located at both sides of the T-T zone have been analysed using wavelet analysis in terms of biases of frequency and phase (Kaminski et al., 2010). The results indicated the existence of frequency biases in baseline’s time series, which might result from vertical changes. Moreover, the study has shown there is anti-phase oscillation for GNSS stations of the eastern side of the T-T zone and GNSS stations of the western side of the T-T zone. Another approach to detect geodynamic processes in the T-T zone was the research based on the analysis of a series of 10–day solutions from the same part of the year from the period of 1997–2010, using GNSS data from two GNSS stations located at T-T zone (Cisak et al., 2011). Both commercial and scientific software were applied. The results obtained indicated that commercial software are insufficient to study the geodynamic process at the investigated part of T-T zone. The study also showed that processing of a few days GNSS data, e.g. from 10 days, annually, using scientific software does not provide sufficient basis to justify the geodynamic processes at such area as T-T zone, that seems quite stable. The other study concerned the review the impact and importance of such sources like earth tides, ocean tidal loading, atmospheric radiation tides loading, polar motion and its oceanic indirect effect, and the non-tidal ocean loading, in high-precision positioning with space geodetic techniques focusing on Jozefoslaw station located in the T-T zone (Rajner, 2012). It has indicted which sources are important to be considered to fulfil precision criteria of positioning. Vertical movements of the Earth’s crust over Poland including the area of T-T zone were investigated with the use of GNSS data from the ASG-EUPOS (Active Geodetic Network EUPOS) and European Permanent Network (EPN) as well as geometrical levelling data (Kontny and Bogusz, 2012). This study has indicated a reference defect due to the sea level variability, when comparing the vertical motions from these three data sources against each other. All those studies have addressed the T-T zone as a potential subject for geodynamic process, and their results obtained can be regarded as a contribution to the further studies.

The purpose of this study is to verify velocities from recent ITRF/ETRF solutions for the stations in the T-T zone as well as to evaluate the possible geodynamic processes by using long time series of GPS data from four permanent GNSS stations of IGS/EPN network operating in T-T zone.

2. Study area and GNSS stations used

The Teisseyre-Tornquist zone (T-T zone) boundary region is situated in the collision zone between the Precambrian Platform of Eastern Europe and the Paleozoic Platform of Central and Western Europe. It has been regarded as one of the seismo-tectonically active areas of Europe (Grad et al., 2000). This zone is crossing the area of Poland from North-West to South-East (Fig. 1). Two permanent GNSS stations, named JOZE and JOZ2 are located at Jozefoslaw Astrogeodetic Observatory in the east boundary of the T-T zone, and two sites BOGO and BOGI are located at Borowa Gora Observatory outside the T-T zone. These stations operate within the European Permanent GNSS Network (EPN) of EUREF since mid 1990. Furthermore, stations BOGI, JOZ2 and JOZE also operate within the International GNSS Service (IGS). There are few impor-

Fig. 1. The Teisseyre-Tornquist zone (T-T zone) boundary region and study area (dashed rectangle)
tant reasons why those stations have been chosen for the following research: (1) their location can offer an appropriate baselines configuration to examine the geodynamic processes at T-T zone, (2) the velocities from the recent ITRF and ETRF have exhibited inconsistent slow motion at baselines of ~42 km lengths, (3) the availability of long-term continuous GNSS data. Table 1 summarizes the main characteristics of these stations.

3. GPS data processing

The GPS observation data from 2004–2012 with sampling rates of 30 seconds from the GNSS stations specified in Table 1 have been processed using precise ephemeris and Earth rotation parameters provided by the international GNSS service (IGS). Furthermore, Earth tides and Ocean tide loading model coefficients based on IERS and FES2004 models (Lyard et al., 2006), respectively, were implemented to eliminate the tide-loading effects. Antenna Phase Centre Variation (PCV) were modelled with the use of absolute PCV model. According to a double-differencing processing standards of the Bernese GPS software v.5.0 (Dach et al., 2007), and the EPN Local Analysis Centres (EPN LAC) recommendations (see http://www.epncb.oma.be), an optimal processing strategy was developed to process the data in daily session solution. The basic steps of this strategy can be described in brief as follows:

- The observed GPS data, precise ephemeris and Earth rotation parameters were converted to the Bernese format.
- The baselines JOZE-BOGO, JOZE-BOGI, JOZ2-BOGO and JOZ2-BOGI were created from single differencing files.
- Cycle slips were detected and corrected; and then outliers were detected and removed from the observations.
- Zenith path delays were estimated at 2h intervals for baseline stations. A priori values for the zenith path delays were obtained using the DRY NEILL model, and wet part of the troposphere was estimated with use of the WET NEILL mapping function (Neill, 1996).
- The phase ambiguities have been resolved using the SIGMA-dependent strategy. During this step, both frequencies L1 and L2 were used, the minimum elevation angle was set to 3°, and the elevation-dependent weighting was applied by using the \(\cos^2(\varphi) \) function.
- Finally, each baseline was adjusted by considering one of the baseline stations as fix station.

According to above steps, Processing Control File (PCF) was created. This PCF defines which scripts are to be in run, and in what sequence the processing will be conducted by means of the Bernese Processing Engine (BPE) tool (cf. Dach et al., 2007). With the use of BPE, the GPS data from each individual baseline were processed in daily batches.

<table>
<thead>
<tr>
<th>Station</th>
<th>Domes No</th>
<th>Receiver</th>
<th>Antenna and radom Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOGO</td>
<td>12207M003</td>
<td>Ashtech Z-XII3 TPS EUROCARD</td>
<td>ASH701945C_M Snow</td>
</tr>
<tr>
<td>BOGI</td>
<td>12207M002</td>
<td>Ashtech Z18 JPS E_GGD JPS Legacy JAVAD TRE_G3T DELTA JPS EUROCARD</td>
<td>ASH701941.B Snow</td>
</tr>
<tr>
<td>JOZE</td>
<td>12204M001</td>
<td>Trimble 4000SSI Trimble 4000SSE</td>
<td>TRM14532.00 None</td>
</tr>
<tr>
<td>JOZ2</td>
<td>12204M002</td>
<td>Ashtech Z18 Leica GRX 1200 GG Pro</td>
<td>ASH701941.B LEIAT504GG Snow None</td>
</tr>
</tbody>
</table>
4. Results and analysis

The daily baseline components ($\Delta X, \Delta Y, \Delta Z$) were obtained for BOGI–JOZ2, BOGI–JOZE, BOGO–JOZ2 and BOGO–JOZE baselines. In order to reduce the white noise within the daily solutions, 7–days average solutions were obtained by applying moving average window with 7–day intervals. Figures 2–4 show the changes of baselines components with respect to their mean values of daily and 7–day average solutions. Moreover, the lengths of those baselines were calculated from daily solutions as well as from 7–days average solutions. Depicted in Figure 5 daily and 7–day average solutions centered with respect to their mean values show the variations of baseline lengths (reformulation). The histograms of differences between the daily solutions and 7–day average solutions are presented in Figure 6. About 95% of daily solutions agree with 7–day average solutions at the level of ±4 mm for the X and Y components, ±6 mm for the Z components, and ±4 mm for the baseline lengths.

The linear trends (V_X, V_Y, V_Z and V_D) of baselines components and baselines length variations were estimated from 7–days average solutions using linear regression analysis (Table 2). They are within the range from -0.2 ± 0.27 to 0.3 ± 0.36 mm/year in X–component, from -0.3 ± 0.20 to -0.6 ± 0.60 mm/year in Y–component and from -0.2 ± 0.16 to 0.6 ± 0.30 mm/year in the baseline length. It should be noted that during the GPS week 1470 the antenna of station JOZ2 was replaced, and therefore linear trends of baselines BOGO–JOZ2 and BOGI–JOZ2 variations were estimated in two steps before and after the replacement.

In order to verify the velocities of these sites obtained from the recent ITRF/ETRF solutions (see http://itrf.ign.fr/ITRF_solutions/ and http://etrs89.ensg.ign.fr/pub), the estimated linear trends of baselines components and lengths variations were compared with the respective ones obtained from recent ITRF/ETRF. The differences Δ between the velocities from recent ITRF/ETRF and the estimated linear trends of BOGI–JOZ2, BOGI–JOZE, BOGO–JOZ2 and BOGO–JOZE baseline components variations are presented in Figure 7.

The differences Δ shown in Figure 7 exhibit compatibility of all baselines investigated. They have revealed an agreement of about -0.1 to 0.5 mm/year at Y–component for all reference frames. The differences between linear trends of baseline components variations obtained from ITRF2005 and ETRF2000 (R5) and the corresponding ones obtained from 7–day average solutions can reach as much as 2.6 mm/year in X–component, 0.3 mm/year in Y–component,
3.8 mm/year in Z–component and 4.6 mm/year in the length of these baselines. This might be due to the relative antenna phase variation (PCV) models that was applied only when computing ITRF2005 and ETRF2000 (R5) (Bruyninx et al., 2011).

The ITRF2008 and ETRF2000 (R8) solutions coincide at sub millimetre level with the estimated linear trends of baseline components variations. Overall, the ETRF2000 (R8) has provided good agreement with respect to 7–day average solutions.

Fig. 3. Variations in Y–component; daily solutions (grey dots) and 7–day average solutions (red line); linear trends (black line); blue vertical lines represent the period of antenna replacement at JOZ2

Fig. 4. Variations in Z–component; daily solutions (grey dots) and 7–day average solutions (red line); linear trends (black line); blue vertical lines represent the period of antenna replacement at JOZ2
5. Summary and conclusions

Continuous GPS observations (from 2004.0 to 2012.9) of four Polish permanent GPS stations (BOGO, JOZE, JOZ2 and BOGI) located at the T-T zone area were processed to assess their relative tectonic motion as well as to examine the consistency of the recent ITRF/ETRF at T-T zone. With the use of Bernese GPS software v.5.0, daily solutions for components of four individual baselines BOGO–JOZ2, BOGI–JOZE, BOGO–JOZ2 and BOGO–JOZE have been obtained, then 7–day average solutions were estimated. From the variations of these 7–day average solutions, linear trends for each baseline were determined.

All investigated baselines have provided quite similar linear trends within the corresponding baseline components and baseline length. Generally, linear trends of the variations of these four baselines components have revealed that the relative motions of these GNSS stations are at sub-millimetre level. The estimated uncertainties of linear trends determined were also at sub-millimetre level. Therefore, in order to attribute such trend as the effect of the geodynamic process at the investigated part of T-T zone, and taking into consideration...

<table>
<thead>
<tr>
<th>Baseline</th>
<th>V_X</th>
<th>V_Y</th>
<th>V_Z</th>
<th>V_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOGI–JOZ2</td>
<td>0.3 ±0.36</td>
<td>–0.3 ±0.25</td>
<td>0.2 ±0.60</td>
<td>0.6 ±0.30</td>
</tr>
<tr>
<td>BOGI–JOZE</td>
<td>0.0 ±0.26</td>
<td>–0.3 ±0.20</td>
<td>–0.2 ±0.34</td>
<td>0.0 ±0.16</td>
</tr>
<tr>
<td>BOGO–JOZ2</td>
<td>–0.2 ±0.27</td>
<td>–0.6 ±0.27</td>
<td>0.1 ±0.55</td>
<td>0.5 ±0.32</td>
</tr>
<tr>
<td>BOGO–JOZE</td>
<td>0.3 ±0.29</td>
<td>–0.3 ±0.25</td>
<td>0.0 ±0.38</td>
<td>–0.2 ±0.16</td>
</tr>
</tbody>
</table>

Fig. 5. Variations in baseline lengths; daily solutions (grey dots) and 7–day average solutions (red line); linear trends (black line); blue vertical lines represent the period of antenna replacement at JOZ2
The use of GPS data at T-T Zone for the verification of the recent terrestrial reference frames considering possible geodynamic processes

Fig. 6. Histograms showing the difference between the daily solutions and the 7-day averages solutions

Fig. 7. The differences Δ between linear trends of baselines components variations from recent ITRF/ETRF and the estimated ones from 7-day average solutions
present accuracy of GPS data, long period of GPS monitoring data will be needed.

The linear trends of baselines components variations estimated from 7–day average solutions demonstrate much better agreement with the respective ones obtained from ITRF2008/ETRF2000 (R8) velocities than with those from ITRF2005/ETRF2000 (R5). This confirms the superiority of ITRF2008/ETRF2000 (R8) over ITRF2005/ETRF2000 (R5) addressed in the literature. It indicates that velocities of stations in the investigated area, provided by ITRF2008/ETRF2000 (R8) are more reliable than those from ITRF2005/ETRF2000 (R5). It also suggests ETRF2000 (R8) as the recommended reference frame at that part of T-T zone.

Acknowledgments

The research was done in the framework of the statutory project “Problems of geodesy and geodynamics” of the Institute of Geodesy and Cartography, Warsaw, Poland.

References

Wykorzystanie obserwacji GPS w strefie T-T do weryfikacji współczesnych układów odniesienia z uwzględnieniem możliwych procesów geodynamicznych

Walyeldeen Godah
Uniwersytet w Chartumie, AL-Jama’a St., 321-11115 Khartoum, Sudan
Instytut Geodezji i Kartografii, ul. Modzelewskiego 27, PL 02-679 Warszawa
Tel.: +48 22 3291903, Fax: +48 22 3291950, E-mail: w-hassan@igik.edu.pl

Jan Krynski
Instytut Geodezji i Kartografii, ul. Modzelewskiego 27, PL 02-679 Warszawa
Tel.: +48 22 3291904, Fax: +48 22 3291950, E-mail: krynski@igik.edu.pl

Jan Cisak
Instytut Geodezji i Kartografii, ul. Modzelewskiego 27, PL 02-679 Warszawa
Tel.: +48 22 3291908, Fax: +48 22 3291950, E-mail: jan.cisak@igik.edu.pl

Streszczenie. Możliwość interpretowania zjawisk geodynamicznych na podstawie analizy obserwacji GPS w dużej mierze zależy od jakości ziemskiego układu odniesienia. Celem niniejszej pracy jest zweryfikowanie prędkości stacji uzyskanych ze współczesnych rozwiązań ITRF/ETRF, a także ocena ewentualnych procesów geodynamicznych przy użyciu długiego szeregu czasowego obserwacji na stacjach permanentnych GNSS położonych w rejonie strefy Teisseyre’a-Tornquista. Składowe czterech wektorów obliczono przy użyciu programu Bernese v.5.0 z obserwacji GPS z lat 2004–2012. Poddano analizie zmiany czasowej składowych tych wektorów oraz ich długości; przy wykorzystaniu analizy regresji wyznaczono trendy liniowe tych zmian. Rezultaty analiz wskazują na zmiany w przedziałach -0.2 do 0.3 mm/rok w składowej X, -0.6 do -0.3 mm/rok w składowej Y, -0.2 do 0.2 mm/rok w składowej Z oraz -0.2 do 0.6 mm/rok w długości wektora. Wyznaczone trendy liniowe zmian składowych wektorów wykazują znacząco lepszą zgodność z odpowiednimi zmianami otrzymanymi z rozwiązań w układach ITRF2008/ETRF2000 (R8) niż ze zmianami z rozwiązań w układach ITRF2005/ETRF2000 (R5).

Słowa kluczowe: strefa Teisseyre’a-Tornquista, geodynamika, układ odniesienia, GPS, zmiany czasowe, trend liniowy

Streszczenie. Sposób zaprezentowania rzeczywistości na mapie wpływa na jej odbiór przez użytkownika, a więc rzutuje również na obraz rzeczywistości, jaki zostanie wytworzony w jego umyśle. Dlatego też mapy od wieków były i nadal są uznawane za narzędzia poznania, kształtujące obraz rzeczywistości, jaki zostanie wytworzony w jego umyśle. Dwudziestowieczni kartografowie doszli do przekonania, że wielowiekowy, bazujący na intuicji, sposób opracowywania map nie tylko można, ale wręcz należy zmodyfikować, aby lepiej odzwierciedlały one rzeczywistość, wykorzystując w tym celu teorie i metody badawcze z innych dziedzin, w tym szczególnie z psychologii. Zaczęcie metod z psychologii przyczyniło się do rozwoju kartografii poznawczej. Jej podstawowymi cechami, odróżniającymi ją od innych kierunków badawczych w kartografii, było zwrócenie się w stronę użytkownika mapy, analiza procesu jej czytania i interpretacji, stosowanie eksperymentu jako podstawowej metody badawczej oraz przenoszenie na grunt kartografii doświadczeń i metod, a często również samych problemów badawczych, zaczerpniętych z psychologii.

Sposób wykorzystania mapy oraz predyspozycje i ograniczenia poznawcze jej użytkownika należą do istotnych zagadnień podejmowanych przez kartografów od kilkudziesięciu lat. Problem efektywności map powinien być bowiem rozwiązywany dzięki wykorzystaniu wiedzy zarówno na temat zasad ich redakcji, jak również zdolności poznawczych użytkownika. Pierwsze badania psychologiczne w kartografii skoncentrowały się na jednej z subdyscyplin psychologii – psychofizyce. Jest to jeden z najstarszych obszarów badawczych psychologii, zajmujący się badaniem zależności między bodźcem fizycznym a zachowaniem, doznaniem psychicznym lub umysłowym, które ten bodziec wywołuje. Po okresie dużego zainteresowania badaniami eksperymentalnymi w latach 1970. już na początku lat 1980. badania te zaczęły spotykać się z narastającą krytyką. Do spadku zainteresowania badaniami nad percepcją map przyczyniło się również rozwój i upowszechnienie technik komputerowych. Kiedy znacząca część podstawowych problemów dotyczących wdrażania technik komputerowych w kartografii została rozwiązana, to właśnie komputery przyczyniły się do ponownego wzrostu zainteresowania badaniem percepcji map. Ułatwili bowiem badanie map oraz rozszerzyły zakres metod badawczych, a także umożliwiły powstanie wielu nowych rodzajów map, na przykład map animowanych, interaktywnych, prezentacji trójwymiarowych, które zmieniły sposób korzystania z mapy i wymagały przeprowadzenia odpowiednich badań. Dostosowanie nowych form opracowań kartograficznych do możliwości percepcyjnych człowieka zostało uznane za jedno z fundamentalnych zadań kartografii.

Jednym z rodzajów stosowanych percepcyjnych badań psychologicznych jest poszukiwanie wizualne (ang. visual search). Wymaga ono zaangażowania uwagi respondenta podczas wykonywania zadań, polegających na oznaczeniu i identyfikacji zadanych obiektów w złożonym układzie wizualnym, pełnym różnorodnych obiektów rozpraszających jego uwagę. Teorie poszukiwania wizualnego zajmują się wyjaśnianiem, w jaki sposób ludzie poszukują konkretnych obiektów i wypierają je spośród wielu innych. Badania te są stosowane również m.in. w medycynie, marketingu oraz reklamie.

Słowa kluczowe: kartografia, poszukiwanie wizualne w percepcji map, teoria integracji cech, teoria zaangażowania uwagi, teoria poszukiwania kierowanego
INSTRUCTIONS TO AUTHORS

GEOINFORMATION ISSUES (Problemy Geoinformacji) is a journal issued 2-3 times a year, publishing peer-reviewed articles covering theoretical, experimental or applicable problems of geodesy, surveying engineering, photogrammetry, cartography, GIS and remote sensing.

Legal requirements
The author(s) guarantee(s) that the manuscript will not be published elsewhere in any language without the consent of the copyright owners, that the rights of the third parties will not be violated, and that the publisher will not held legally responsible should there be any claims for compensation.

Authors wishing to include figures or text passages that have already been published elsewhere are required to obtain permission from the copyright owner(s) and to include evidence that such permission has been granted when submitting their papers. Any material received without such evidence will be assumed to originate from the authors.

Manuscript submission
Submission of the manuscript implies that the work has not been published before (except in form of an abstract or as a part of a published lecture, review or thesis); that it is not under consideration for publication elsewhere; that its publication has been approved by all co-authors, if any, as well as by the responsible authorities at the institution where the work was carried out.

Manuscripts should be submitted in English in electronic form to the Editor-in-Chief of GEO-INFORMATION ISSUES, 27 Modzelewskiego St., 02-679 Warsaw, Poland, tel:+48 22 3291904, fax:+48 22 3291950, e-mail: geoinfo@igik.edu.pl. Please be sure to include your e-mail address and your fax as well as phone number. The manuscripts and figures will not be returned, unless specifically requested by the authors.

Electronic submission of a manuscript
Layout guidelines:
– use a normal, plain Times Roman font for text, italics for textual emphasis, bold for mathematical vectors,
– use the table functions of your word processing program, not spreadsheets, to make tables,
– use the equation editor of your word processing program for equations,
– place all figures with figure legends and tables with table legends in the manuscript,
– submit also all figures as separate files.

Data format:
Save your manuscript in DOC or RTF Microsoft Word for Windows format.

Illustrations:
Figures should be provided in the vector graphics. The preferred figure format is CDR (Corel Draw), XLS (Microsoft Excel), EPS. Exceptionally JPG or TIFF (specifically for halftone illustrations) formats will be accepted. The filename should include the figure number. Figure legends should be included in the text and not in the figure file. Scanned line drawings should be digitised with a minimum resolution of 800 dpi relative to the final figure size. For digital halftones, 300 dpi is usually sufficient. Non-standard fonts used in the vector graphics must be included. Please do not draw with hairlines. The minimum line width is 0.2 mm (0.567 pt) relative to the final size.

Delivery of a manuscript:
Please send your manuscript, preferably a zip file (text and illustrations in separate files, unencoded) either by e-mail or on a CD ROM. Please always supply the following information with your data: operating system, word processing program, drawing program, image processing program, compression program. The file name should be memorable (e.g. author name), have no more than 8 characters, and include no accents or special symbols.

Manuscript preparation
Manuscripts should be typed in single-line spacing throughout on the A4 sheet with 2.5 cm margins.
1. **Title page:**
- a concise and informative title
- the name(s) of the author(s)
- the name(s) and address(es) of the affiliation(s) of the author(s)
- the e-mail address, telephone and fax numbers of the communicating author

2. **Abstract:** the paper must be preceded by a sufficiently informative abstract presenting the most important results and conclusions.

3. **Keywords:** three to five keywords should be supplied.

4. **Introduction:** should state the purpose of the investigation and give a short review of the pertinent literature.

5. **Acknowledgements:** should be brief and consist of grant or individuals that require acknowledgement. The names of funding organizations should be given in full.

6. **References:** the list of references should be in alphabetical order and should only include works that are cited in the text and have been published or accepted for publication. Personal communications could only be mentioned in the text. References should consist of the complete list of authors and should be given in the following form:
 - journal articles:
 - books:
 - multi-author books (proceedings):

In the text, references should be cited by author(s) last name and year: e.g. (Beutler, 2003a), (Müller and Rapp, 1993), (Schwarz et al., 1990), (Sjöberg et al., 2000; Sideris, 2001b; 2002).

7. **Formulae and symbols:** must be written legibly and will be typeset in italics. One-layer indexing is preferable. Numbering of formulae, if necessary should be given in brackets fitted to the right margin.

8. **Footnotes:** to the text should be numbered consecutively and placed on the bottom of the page to which they refer. Footnotes to the tables should be indicated by superscript lowercase letters.

9. **Illustrations and tables:** all figures (photographs, graphs or diagrams) and tables should be cited in the text and each numbered consecutively throughout. Lowercase roman letters should identify figure parts. Figure legends must be brief and must contain self-sufficient explanations of the illustrations. Each table should have a title and a legend explaining any abbreviation used in that table.

10. **Units:** SI units must be used.

11. **Running head:** consisting of at most 60 characters a concise banner representing the title of the article must be submitted by the author(s).

Proofreading
Proofreading is the responsibility of the author. Corrections should be clear; standard correction marks should be used. Corrections that lead to a change in the page layout should be avoided. The author is entitled to formal corrections only. Substantial changes in content, e.g. new results, corrected values, title and authorship are not allowed without the approval of the editor. In such case please contact the Editor-in-Chief before returning the proofs.

Free copy
Each author will receive one complimentary copy of the current journal. All copies are supplied to the communicating author.