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Abstract: The CM SAF Cloud Fractional Cover dataset from Meteosat First and Second Generation
(COMET, https:/ /doi.org/10.5676 /EUM_SAF_CM/CFC_METEOSAT/V001) covering 1991-2015
has been recently released by the EUMETSAT Satellite Application Facility for Climate Monitoring
(CM SAF). COMET is derived from the MVIRI and SEVIRI imagers aboard geostationary Meteosat
satellites and features a Cloud Fractional Cover (CFC) climatology in high temporal (1 h) and spatial
(0.05° x 0.05°) resolution. The CM SAF long-term cloud fraction climatology is a unique long-term
dataset that resolves the diurnal cycle of cloudiness. The cloud detection algorithm optimally
exploits the limited information from only two channels (broad band visible and thermal infrared)
acquired by older geostationary sensors. The underlying algorithm employs a cyclic generation
of clear sky background fields, uses continuous cloud scores and runs a naive Bayesian cloud
fraction estimation using concurrent information on cloud state and variability. The algorithm
depends on well-characterized infrared radiances (IR) and visible reflectances (VIS) from the
Meteosat Fundamental Climate Data Record (FCDR) provided by EUMETSAT. The evaluation
of both Level-2 (instantaneous) and Level-3 (daily and monthly means) cloud fractional cover
(CFC) has been performed using two reference datasets: ground-based cloud observations (SYNOP)
and retrievals from an active satellite instrument (CALIPSO/CALIOP). Intercomparisons have
employed concurrent state-of-the-art satellite-based datasets derived from geostationary and polar
orbiting passive visible and infrared imaging sensors (MODIS, CLARA-A2, CLAAS-2, PATMOS-x
and CC4CL-AVHRR). Averaged over all reference SYNOP sites on the monthly time scale, COMET
CFC reveals (for 0-100% CFC) a mean bias of —0.14%, a root mean square error of 7.04% and a trend
in bias of —0.94% per decade. The COMET shortcomings include larger negative bias during the
Northern Hemispheric winter, lower precision for high sun zenith angles and high viewing angles,
as well as an inhomogeneity around 1995/1996. Yet, we conclude that the COMET CFC corresponds
well to the corresponding SYNOP measurements, and it is thus useful to extend in both space and
time century-long ground-based climate observations.
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1. Introduction

Clouds play a crucial role in the terrestrial climate system. They govern Earth’s energy budget
and are an essential part of the water cycle [1]. Cloud feedbacks are among the most uncertain
components of the climate models [2,3]. Consistent and continuous cloud observations are required
to better understand the cloud—climate interactions with the underlying micro- and macro-physical
processes including those related to cloud-aerosol feedback. Therefore, as part of the United Nations
Framework Convention on Climate Change (UNFCCC), the Global Climate Observing System (GCOS)
has included clouds in the set of essential climate variables (ECVs, [4,5]) with a special emphasis on
satellite-based retrievals [6].

Satellites can uniquely observe changes in cloud cover on a global or regional scale. Moreover,
they now span more than a 30-year period which is agreed to be a minimum to study climatological
changes [7]. Nevertheless, the climatological period can only be achieved by a limited number
of satellite programs. Among polar orbiting satellites, long records were successfully built from
the Advanced Very High Resolution Radiometer (AVHRR) such as International Satellite Cloud
Climatology Project (ISCCP, [7,8]) which also employs geostationary sensors, Pathfinder Atmospheres
Extended (PATMOS-x, [9]), CLoud, Albedo and RAdiation dataset (CLARA-A2, [10]) of the
EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF), and the Community
Cloud Retrieval for Climate dataset of the Cloud_cci project (CC4CL-AVHRR, [11]) in a frame of the
European Space Agency Climate Change Initiative [12].

Producing climate data records from polar-orbiting satellites faces two particular challenges
related to temporal sampling. First, polar-orbiting sensors (such as AVHRR) provide imagery
for a given location at low latitudes only twice a day, from the ascending and descending nodes.
For AVHRR sensors being simultaneously placed on two NOAA satellites (on morning and afternoon
orbits), this leads to four observations a day. Such a temporal coverage started in 1991, while years
from 1981 are covered by only two observations per day. The second challenge is related to satellite
orbital drift, which is caused by Earth’s gravitation and results in shifted image acquisition times
due to imperfect orbit stabilization maintained by space agencies. As a result, the cycle of diurnal
cloudiness is sampled at different local times, which in turn can lead to unwanted trends detected
during climatological analyses [13]. Currently available cloud climatologies including data from
geostationary satellites, such as ISCCP, are known to be hampered by temporal instabilities and
view-angle effects [14].

Therefore, CM SAF has employed data from the geostationary Meteosat satellites to produce
cloud climatologies with a fully resolved diurnal cycle. Cloud physical properties were retrieved from
12 channels of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board Meteosat Second
Generation (MSG) for the Cloud Property Dataset (CLAAS), whose second version has been recently
published [15]. The data record is limited to a (non-climatological) period of 12 years (2004-2015).
Meteosat observations are, however, available since 1982 if Meteosat First Generation (MFG) with
its Meteosat Visible and Infrared Imager (MVIRI) is taken into account. A combination of MFG and
MSG data has been used by CM SAF to produce climate data records of (1) surface radiation, sunshine
duration and effective cloud albedo (SARAH-2, [16]), (2) top-of-atmosphere short-wave and long-wave
radiation [17], and (3) free tropospheric humidity [18].

This paper evaluates the CM SAF ClOud Fractional Cover dataset from METeosat First and
Second Generation (COMET, [19], https:/ /doi.org/10.5676 /EUM_SAF_CM/CFC_METEOSAT/V001)
derived across Meteosat generations from MVIRI and SEVIRI following a novel cloud detection
methodology. The dataset features CFC available at hourly, daily and monthly means for a period
1991-2015 aggregated on a regular 0.05° x 0.05° grid. In the following, we describe the underlying
satellite data (Section 2.1) and the cloud detection algorithm (Section 2.2), data used for validation
(Section 3) and intercomparisons (Section 4), as well as results of validation and intercomparisons
(Sections 5-7). Finally, conclusions are drawn in Section 8.
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2. The COMET Data Record

2.1. Meteosat Data

The COMET data record is based on data from two Meteosat generations [20,21]. The satellites
have been located around a longitude of 0° directly above the equator. Sensors on board both satellite
generations have a field of view that extends to around 80°N/S and 80°W/E. However, the COMET
data record covers an area of up to 62°N/S and 62°W /E due to a decrease of accuracy at higher satellite
viewing angles.

The MFG satellites employed MVIRI—a radiometer that scans the earth every 30 min in 3 spectral
bands (so-called Meteosat heritage channels) covering visible and infrared wavelengths: the broadband
visible channel (VIS, 500-900 nm), the water-vapor absorption channel (WV, 570-710nm), and the
thermal infrared channel (IR, 1050-1250 nm). Although the first satellite was launched in 1977 (MFG-1),
continuous archive data are available from 1981. The MSG satellites have been equipped with
SEVIRI [22] scanning the earth every 15 min in 12 spectral channels ranging from the visible to
the thermal infrared. The nadir resolution of MVIRI is 2.5 km for VIS and 5 km for WV and IR channels.
Corresponding SEVIRI resolution is 3 km for all 12 channels.

To ensure consistency between retrievals from both sensors, the COMET retrieval algorithm
employed only Meteosat heritage channels, which were inter-calibrated beforehand. The MVIRI VIS
was calibrated by EUMETSAT [23] based on “stable” radiances of desert locations [24]. Calibration
of MVIRI WV and IR performed by EUMETSAT employed the High Resolution Infrared Radiation
Sounder (HIRS) instrument on board the National Oceanic and Atmospheric Administration (NOAA)
polar orbiting platforms. However, inter-calibration of MFG-2 and MFG-3 were not available, so the
presented COMET covers the period starting in 1991 with MFG-4. For MSG channels, we used
calibration factors provided as part of Level 1.5 radiance data by EUMETSAT.

Since the broadband VIS channel is not available for MSG SEVIRI on the full Meteosat
scanning area, it was simulated by use of the linear combination of reflectance’s of the two narrow-band
MSG SEVIRI channels (560-710 nm and 740-880 nm) following Deneke and Roebeling [25].

Finally, COMET is based on 14 years (1991-2004) of MFG MVIRI and 11 years (2005-2015)
of MSG SEVIRI data, respectively. MFG-7 and MSG-1 have been operating simultaneously in 2004
and 2005, which is used in the following for a direct comparison of MVIRI- and SEVIRI-based retrievals.
The periods covered by consecutive Meteosat missions used for the COMET data record are shown
in Figure 1.
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Figure 1. Overview of the Meteosat record used as input for the generation of COMET.

2.2. Cloud Detection

Due to the very limited spectral coverage of heritage geostationary sensors, currently available
multi-spectral cloud detection algorithms were not applicable for COMET. The COMET cloud detection
follows a novel concept proposed by Stockli et al. [26]. The algorithm tries to replace missing
spectral information with the full spatial and temporal information available from geostationary
sensors. It further combines numerical model inversion with Bayesian statistics towards a continuous



Remote Sens. 2018, 10, 804 4 of 23

cloud detection traceable to an absolute reference from ground measurements. A detailed technical
description of the algorithm can be found in the CM SAF Algorithm Theoretical Basis Document [21].
A short overview of the individual algorithm components follows in this section.

Cloud detection from space is more effective if the cloud-free state of the surface is a priori
known. This especially applies to semi-transparent or subgrid-scale cloud types where the satellite
sensor always measures a combined signal with surface and cloud contributions. The algorithm thus
firstly estimates clear-sky reflectances and brightness temperatures. They can then be related to the
reflectances and brightness temperatures of the all-sky (potentially cloudy) scene. Compared to the
often used external clear sky fields (such as monthly surface albedo climatologies or NWP-based surface
skin temperature), COMET estimates clear sky states implicitly from concurrent imagery. This is
possible due to the high temporal frequency of geostationary observations. Clear sky reflectances and
brightness temperatures are retrieved for each pixel by analysis of a full day of geostationary data.
Semi-empirical parametric diurnal cycle models of reflectance and brightness temperature are fitted to
cloud-screened and thus irregularly spaced observations, yielding a continuous diurnal cycle of clear
sky reflectance and brightness temperature for each day. Compared to the often used image-by-image
processing sequence, our method exploits the high temporal dependence of daily clear sky observations
which generates consistency across time steps by modeling it. This, in turn, increases the robustness of
the downstream cloud detection which relies on the clear sky observations.

The algorithm avoids binary decisions in favor of continuous measures of cloud state. For instance,
it employs continuous cloud scores [27] which are related to the respective clear sky estimates. A cloud
score is a measure of cloudiness by combining the continuous spectral, temporal or spatial information
of several satellite channels. An example for such a cloud score is the difference between the all-sky
minus clear-sky reflectance. COMET also employs cloud scores which jointly take spatial and temporal
variability into account. Each score continuously measures cloud occurrence with its unique detection
capability. The difference between all-sky and clear-sky brightness temperature, for instance, is useful
to detect thick opaque clouds but may fail for low-level subgrid-scale cumulus clouds. The latter,
however, introduce a signal in the temporal and spatial variability of brightness temperature which
can be harvested with a spatio-temporal variability score. Each score has a value range from negative
(clear) to positive (cloudy), 0 being “undecided”. Compared to the often used binary decision with
classification trees, the application of independent cloud scores can largely avoid the downstream
propagation of classification errors and no thresholds have to be set for each score.

Scores in COMET are not hard wired to each other and they do not need to be individually tuned.
Instead, CFC is retrieved by analysis of all cloud scores in a single step by use of a Bayesian classifier.
The commonly used naive Bayesian classifier (e.g., [28]) is extended in COMET to include covariance
information between scores. Many scores are correlated and this dependence can be harvested for
cloud detection. For instance, a bright cloud is often cold, but a cold bright surface can also be snow
if it has a low diurnal variability. The Bayesian classifier derives COMET CFC as the pixel-wise
instantaneous cloud fractional cover in % corresponding to the Total Cloud Cover (TCC) parameter of
SYNOP cloud observations. Conditional occurrence probabilities of the Bayesian classifier are derived
by CFC class with >3 x 10° CFC observations from 339 quality-screened and homogeneity-tested
SYNOP sites distributed over the major climate zones covered by the Meteosat field of view.

3. Validation Methods and Data

The purpose of the validation effort is to characterize COMET CFC in terms of its accuracy and
precision (See Appendix A.1), thus to give a guidance for the product applicability. Furthermore,
the data record is confronted with the product user requirements collected by CM SAF [29]. These
requirements determined for three categories (threshold, target and optimal) follow the definitions from
the WMO Observing Systems Capability Analysis and Review Tool (OSCAR, http://www.wmo-sat.
info/oscar/observingrequirements).
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The threshold is the minimum requirement to be met to ensure that data are useful and can be
provided to the user. The target is an intermediate level that would result in a significant improvement
for the targeted application. It is a realistic requirement taking into account the scientific challenges
and available sensors. The optimum is an ideal requirement above which further improvements are
not necessary. The last one is the best possible requirement under optimal conditions of input and
auxiliary data, available sensors and retrievals. Ideally, the optimum requirement is bound to the
GCOS requirements for using the ECV in the field of climate monitoring and climate change detection.
The requirements defined for COMET for these three categories are summarized in Table 1.

Table 1. Accuracy and precision requirements for the COMET daily and monthly Cloud Fractional
Cover (CFC) means (% refer to absolute CFC values).

Accuracy Requirement Precision Requirement
(Mean Bias Error) (Bias-Corrected Root Mean Square Error)

Threshold

Daily means 10% 35%

Monthly means 10% 25%
Target

Daily means 5% 30%

Monthly means 5% 20%
Optimal

Daily means 1% 25%

Monthly means 1% 15%

Requirements on decadal stability are 5%, 2% and 1% for threshold, target and optimal classes.
These requirements and the ones listed in Table 1 are defined after taking into account requirements
from different users and user groups. The most well-established reference here is the recommendations
issued by GCOS [6,30]. However, values are also influenced by requirements from users working with
regional climate monitoring and regional climate modelling applications.

3.1. Synoptic Observations

Synoptic observations from the archive of the European Centre for Medium-Range Weather
Forecasts (ECMWF) were used for COMET validation. The archive contains data from over 6000 sites
worldwide. From these, we selected sites: (1) within 60°N/S and 60°W /E, (2) for which the satellite
viewing angle is below 70°, and (3) where observations were continuously performed in 1991-2015,
at least every 6 h with a maximum break of 30 days. Further, we excluded sites with any inhomogeneity
in a time series of cloud amount monthly anomalies according to Standard Normal Homogeneity
Test (Appendix A.2). Finally, since SYNOP stations are unevenly distributed in geographic space,
in each 2° x 2° geographic grid cell, we selected one SYNOP site with the most frequent observations.
This yielded a total of 237 SYNOP sites distributed over the full Meteosat disc. Yet, there is still a
stronger bias towards European stations.

To validate COMET against SYNOD, the collocations were performed for instantaneous level-2
data. This means that exclusively COMET estimates which had corresponding synoptic observations
(undertaken at the same UTC time and within a range of a given pixel) were collocated. Based on
these collocations, we first assessed the performance of the instantaneous COMET CFC estimates
by means of mean bias error (MBE) and bias-corrected root mean square error (bcRMSE) defined in
Appendix A.1, which are widely used by the climate modelling and cloud remote sensing communities.
Further, the collocations were aggregated to daily and monthly means, and evaluated. A time series
of monthly MBE was also used to analyse COMET decadal stability defined as a change (trend) of
MBE over time, as well as COMET homogeneity investigated by means of the Standard Normal
Homogeneity Test (Appendix A.2).
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3.2. CALIPSO-CALIOP

The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board the Cloud-Aerosol
Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite provides detailed profile
information about cloud and aerosol particles and corresponding physical parameters [31].
This dataset is suitable for validation, as the CALIOP 532 nm signal comes from cloud, aerosols
and precipitation particles and is therefore not “contaminated” by radiation emitted /reflected from the
ground surface as in the case of most passive radiometers. Using a feature classification algorithm [32],
the origin (clouds, aerosol, stratospheric feature) of the backscattered signal can be determined.

The CALIOP products are available in five different resolutions with respect to the along-track
resolution including 333 m (resolution based on the spacing between consecutive footprints of 70 m),
1 km, 5 km, 20 km and 80 km. We used the CALIOP Level-2 5-km cloud layer data record version
3-01 (CAL_LID_L2_05kmAPro-Prov-V3-01) since this 5-km resolution is the closest to the nominal
MVIRI/SEVIRI resolution. CALIOP provides information about cloud phase and cloud type, which
allowed for cloud-type-specific evaluation.

4. Intercomparison Data and Methods

To investigate differences between COMET and other existing multi-channel satellite-based CFC
products, we compared monthly means of COMET and (1) synoptic observations averaged over
237 reference sites for the whole period 1991-2015 (see Section 3.1), (2) satellite-derived datasets
(MODIS, CLARA-A2, CLAAS-2, PATMOS-x and Cloud_cci’s CC4CL-AVHRR-PM) at 1° x 1° grid for
the whole Meteosat disc for 2005. The cloud cover at original spatial resolution of these datasets
was aggregated as a mean value within each 1° x 1° grid. Intercomparisons of COMET with
other satellite-based data records are performed based on monthly means, except PATMOS-x for
which collocations were first rendered at the instantaneous level, and then aggregated to monthly
means. The differences among datasets were quantified by an average as well as spatial and temporal
variability of MBE and bcRMSE using (1) and (2) as reference data.

4.1. MODIS

Moderate Resolution Imaging Spectroradiometer (MODIS) is an advanced imaging instrument
on board the Terra (EOS AM) and Aqua (EOS PM) polar satellites of morning and afternoon orbits,
respectively (see http://modis-atmos.gsfc.nasa.gov/index.html). We used the level-3 MODIS gridded
atmosphere monthly global products [33] —MOD08_M3 (Terra) and MYD08_M3 (Aqua). They contain
monthly 1° x 1° grid averages of atmospheric parameters related to atmospheric aerosol particle
properties, total ozone burden, atmospheric water vapor, cloud optical and physical properties,
and atmospheric stability indices. Statistics are sorted into 1° x 1° cells on an equal-angle grid that
spans a (calendar) monthly interval and then summarized over the globe. We used CFC combined
from Terra and Aqua Collection 5.1, thus starting from 2002 when Aqua was launched.

4.2. CLARA-A2

The CM SAF cLouds, Albedo and Radiation dataset from the AVHRR (CLARA-A2) data
record [10] is the second edition of the CM SAF’s global data record of cloud, surface albedo and
surface radiation products derived from homogenized measurements of AVHRR on board the polar
orbiting NOAA (7-18) and Metop (A) satellites. Herein, we used CFC monthly means compiled
from all AVHRR sensors over a time period 1982-2015 and provided by CM SAF on a global regular
latitude-longitude grid with 0.25 degree resolution. According to the CLARA-A?2 validation report [34],
CLARA-A2 CFC is on average about 3% lower than SYNOP and CALIOP. Precision of CLARA-A2
CFC monthly means is 7% as compared to SYNOP.
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4.3. CLAAS-2

The Cloud Property Dataset Using SEVIRI (CLAAS-2) data record [15] is based on 12 years
of SEVIRI data. We employed the CFC product available as monthly composites on a regular
latitude/longitude grid with a spatial resolution of 0.05° x 0.05°. Monthly composite is an average
of daily means which are defined as the fraction of cloudy pixels per grid box compared to the total
number of analysed pixels in the grid box. Pixels are counted as cloudy if they belong to the classes
cloud filled or cloud contaminated. Fractional cloud cover is expressed as a percentage. According
to the CLAAS-2 validation report [35], CLAAS-2 CFC is on average about 4% and 3% higher than
SYNOP and CALIOP (at level-2), respectively. The precision of CLAAS-2 CFC monthly means is 10%
as compared to SYNOP.

4.4. PATMOS-x

The Pathfinder Atmospheres Extended dataset (PATMOS-x) is a suite of cloud products developed
by NOAA. The CFC global data record was generated from the AVHRR sensors on board NOAA
satellites. The corresponding cloud products have been derived using the Clouds from AVHRR
Extended method (CLAVR-X, [36-38]) employing AVHRR radiances in all available spectral channels.
Cloud fraction was computed from results of a statistical naive Bayesian cloud mask trained on
CALIPSO-CALIOP cloud information [28].

The PATMOS-x product used here is the level-2b product, i.e., the level-2 pixel-level data
subsampled to a 0.1° equal-angle global grid. Since PATMOS-x’s CFC monthly means are not provided
by the data producer, the collocations COMET-PATMOS-x were performed at level-2 with a maximum
time difference of 10 min following recommendations of Bojanowski et al. [39], and then aggregated to
monthly means. To limit the amount of data to process, we used the ascending node of one satellite per
month (Figure 2). Only simultaneous COMET and PATMOS-x observations were used to calculate the
monthly means. Similarly, when comparing with SYNOP, CFC from all three sources had to be present
with a maximum time difference of 10 min. The level-2-based collocation was chosen to avoid the
influence of temporal aggregation, which is sensitive to, e.g., the choice of sensor(s) in case of satellite
mission overlap (e.g., NOAA-18, METOP-A), missing data and aggregation method.

NOAA-18 T
NOAA-16 EE—

NOAA-14 ]

NOAA-12 n

NOAA-11 |

1991 1994 1997 2000 2003 2006 2009 2012 2015

Figure 2. Overview of Advanced Very High Resolution Radiometer (AVHRR) measurements used to
calculate the PATMOS-x CFC monthly means.

4.5. CC4CL-AVHRR (ESA Cloud_cci)

The Community Optimal estimation Cloud retrieval for the Climate (CC4CL) AVHRR data record
is the cloud physical properties CDR produced by the ESA Cloud_cci project [11]. The project has
aimed at adapting and developing the state-of-the-art cloud retrieval schemes to be applied to the
longest existing time series of the cloud observations available from polar orbiting satellites with
AVHRR and AVHRR-like sensors [40,41]. The CC4CL is an optimal estimation retrieval that can
be used to determine cloud properties from visible/infrared satellite radiometers. CC4CL is based
on the ORAC retrieval (Oxford RAL retrieval of Aerosol and Cloud) algorithm [42], with further
developments made in this project. Here, we employed CFC monthly averages derived from AVHRR
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afternoon satellites aggregated on a 0.5 degree latitude-longitude grid for each individual instrument.
Referring to the product validation report [43], the global CFC monthly means derived from AVHRR
sensors reveal a bias from —10 to 5%, and a RMSE of 10-20% as compared to synoptic observations.

5. Validation with SYNOP

The overall difference in CFC between instantaneous COMET and SYNOP averaged over 237 sites
is —0.3% except for Arid and Ocean zones, for which the bias is negative at approximately —5%
(Table 2). However, the bias at individual sites (Figure 3, left) does not reveal distinct spatial patterns,
except an overestimation of 5-15% in Anatolia. The mean COMET bcRMSE is approximately 30%;
however, a noticeable decrease in precision can be seen in Europe from SW to NE (Figure 3, right).

Table 2. Performance statistics of instantaneous (level-2) COMET CFC as compared with synoptic
observations at 237 sites for different climate zones, illumination and viewing angles, seasons
(December—February [DJF], March-May [MAM], June-August [JJA], and September-November [SON])
and the different satellites. Climate zones are taken from a Képpen-Geiger map [44]. The last two rows
reveal COMET performance for CFC aggregated to daily and monthly means (level 3).

N Mean COMET Mean SYNOP MBE bcRMSE
Overall 20,931,127 55.47 55.75 —0.28 29.48
Cold 7,973,837 63.59 63.67 —0.08 31.45
Temperate 9,722,288 55.47 55.43 0.04 28.41
Arid 2,690,808 32.04 33.11 —1.07 26.82
Tropical 356,551 53.73 58.88 -5.16 30.55
Ocean 187,643 49.65 54.26 —4.61 29.98
Day 10,282,717 54.77 57.51 —2.74 2443
Night 7,800,066 55.67 52.53 3.14 34.47
Twilight 2,848,344 57.45 58.21 —0.76 30.39
VZA <30 233,020 40.24 46.86 —6.62 31.75
VZA 30-50 5,461,724 38.33 39.19 —0.85 27.20
VZA > 50 15,236,383 61.85 61.82 0.02 30.20
DJF 5,138,479 62.63 65.34 —-2.71 32.97
MAM 5,253,601 56.74 56.07 0.67 28.24
JJA 5,393,815 45.77 44.90 0.87 26.52
SON 5,145,232 57.20 57.22 —0.02 29.82
MFG-MVIRI 10,456,118 55.94 56.06 —-0.12 30.13
MSG-SEVIRI 10,475,009 55.00 55.44 —0.44 28.81
Daily 2,141,165 51.74 51.90 —-0.17 16.53
Monthly 71,040 51.77 5191 —0.14 7.04

COMET slightly overestimates SYNOP CFC (MBE = 3%) and is less precise (bcRMSE = 34%)
during night-time. It underestimates SYNOP CFC during daytime (MBE = —2.74%) but with higher
precision (bcRMSE = 24%). It is confirmed by a more detailed performance assessment of COMET in
dependence on sun zenith angle (Figure 4a,c).

A seasonal cycle of COMET performance is revealed by a negative bias and larger bcRMSE
during the Northern Hemisphere’s winter months (DJF), and a positive bias and lower bcRMSE in
summer months (JJA) (Table 2). The impact of seasons may be diminished, as statistics are averaged
over both hemispheres; however, the greater impact of snow cover on cloud detection is expected to
occur in the Northern Hemisphere. Table 3 which presents COMET performance for the Northern
Hemisphere winter months only, reveals the most prominent underestimation of CFC in Tropical areas
(exceeding —10%). However, the impact of this underestimation on the overall COMET performance
is limited due to a small number of synoptic observations available in the tropical zone (see N in
Table 2). The seasonal cycle of COMET performance with larger negative bias during DJF is related to
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the expected major problems with cloud detection over snow-covered surfaces. The lowest precision
(bcRMSE >40%) for the night-time retrieval in the Cold zone reveals a limited cloud detection capability
over snow-covered surfaces, when only one thermal channel is available.

On average, at low viewing zenith angles (VZA < 30°), COMET underestimates SYNOP CFC by
approximately 7% (Table 3). This dependency is due to the very few long-term SYNOP sites in the arid
zone of Africa located at a low viewing angle and is discussed later in this section. At VZA > 60 degrees,
COMET loses precision (Figure 4b,d) as expected due to high atmospheric path lengths and possibly
parallax effects.

Table 3. Performance statistics of level-2 COMET CFC as compared with synoptic observations
at 237 sites for the winter season (December-February) for different climatic zones and
illumination conditions.

Day Night Twilight
MBE bcRMSE MBE bcRMSE MBE bcRMSE
Cold —7.22 28.96 —4.43 41.37 —7.95 35.63
Temperate  —3.31 24.32 2.33 34.40 —-1.77 30.17
Arid —5.15 24.27 2.63 31.71 —2.70 27.94
Tropical —12.19 26.34 3.12 34.11 —10.30 30.03
Ocean —8.41 26.60 —-0.15 32.74 —-8.10 28.59
60 -45 -30 -15 0 15 30 45 60 60 -45 -30 -15 0 15 30 45 60
N MBE bcRMSE
|{® -20--15 = 0-5 20-225 ® 30-325
8 e -15--10 ® 5-10 225-25 @ 32.5-35 8
® -10--5 ®10-15 25-27.5 @ 35-37.5
-5-0 27.5-30 @ 37.5 - 40
Q = “ = 2
@ 45 w95 0 15 w45 w0 @ 45 w5 0 5 w45 e

Figure 3. Performance statistics of the instantaneous COMET CFC during 1991-2015 as compared to
synoptic observations at 237 sites: mean bias error (left), bias-corrected root mean square error (right).

Averaged over all 237 reference SYNOP sites, COMET fulfils the optimal accuracy and precision
requirements (Table 1) for both daily and monthly means. The optimal accuracy requirements are
1% for MBE met by daily (MBE = —0.17%) and monthly (MBE = —0.14%) COMET CFC means.
Similarly, bcRMSE of 16.53% and 7.04% comply with optimal precision requirements of 25% and 15%
for daily and monthly means, respectively (Table 2). Taking accuracy and precision requirements
simultaneously into account—optimal, target and threshold requirements are met by 26%, 80% and
97% of sites, respectively (Figure 5).

CFC at six sites do not comply with the threshold requirements (Figure 5). For the SYNOP
station with the WMO identifier 17,096 located in Anatolia, COMET CFC is overestimated. This is
likely related to the already described general overestimation for this region (Figure 3) and needs
further analysis.
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Figure 4. Performance statistics of the level-2 COMET CFC during 1991-2015 as compared to synoptic
observations at 237 sites in relation to sun zenith angle (a,c) and satellite view zenith angle (b,d).
Each box in the box-and-whisker plot (a,c) is generated from all level-2 COMET-SYNOP collocations
(given by N) for Satellite Zenith Angle (SZA) classes given by the x-axis. Boxes denote 1st and 3rd
quartiles (with thick horizontal median line). Whiskers indicate largest and lowest values within
1.5 times the interquartile range, while circles represent values beyond this.
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Figure 5. Performance statistics of the COMET daily (a) and monthly (b) CFC means during 1991-2015
as compared to synoptic observations at 237 sites. Shaded areas reveal the accuracy requirements.

On the other hand, there are five sites where COMET underestimates SYNOP CEC by
10-20%. All five sites are located in the coastal zones of arid and oceanic environments (Figure 3).
This underestimation is consistent with Table 2 summarizing the statistics for these environments.
We hypothesize that the underestimation is related to a scale mismatch at coastal zones where the
observation site is located on land and the satellite pixel covers both ocean and land. Possibly, the sharp
change in background (clear-sky) reflectance and brightness temperature within a single satellite pixel
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might not be compatible with the current CFC algorithm where several continuous cloud scores as
input to the naive Bayesian classifier are based on difference tests between the all-sky and clear-sky
reflectance fields. Eventually, the cloud cover itself has a sharp change from land to ocean, leading
to a reference measurement on land which is not representative for the entire satellite pixel. These
hypotheses need to be verified and taken into account in the algorithm improvements for a next release
of COMET.

Decadal Stability

To assess the temporal stability of COMET, we computed MBE and bcRMSE for each month in
1991-2015 over 237 SYNOP sites. As shown by a dashed line in Figure 6a, the trend in the bias is
—0.94% per decade, thus within the optimal requirements. Note that this negative trend is related to
the overestimation of SYNOP CFC before 1996, i.e., no significant trend was detected separately for
years before and after 1996.

S
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% | Trend of bias: —0.94 % per decade (p < 0.05)
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Figure 6. Time series of mean bias error (a) and bias-corrected root mean square error (b) of COMET as
compared to synoptic observations at 237 sites in 1991-2015. The thick lines with dots represent annual
means. The black dashed line represents a Theil-Sen linear trend provided with its Mann-Kendall
statistical significance. Shaded areas reveal the accuracy requirements. A yellow solid line reveals the
T (k) statistic from the Standard Normal Homogeneity Test.

The break in the MBE time series was corroborated by the relative SNHT test which, following the
guidelines of Aguilar et al. [45] and Toreti et al. [46], was carried out based on the de-trended mean
monthly cloud fraction difference between COMET and SYNOP. At the turn of 1995 and 1996, statistic
T (k) of the relative test slightly exceeds the critical value, which for a time series of 300 elements is equal
10.02 at the 95% confidence level (see Appendix A.2 for SNHT definition and details). The explanation
for this inhomogeneity, very likely caused by non-climatic factors, is not trivial, as there was no
change of satellites in that period (see Figure 1). We intend to evaluate possible inhomogeneities
in both the reference and satellite time series separately in order to better attribute the source of
this inhomogeneity.

The homogeneity analysis does not reveal a break during the transfer from MFG/MVIRI to
MSG/SEVIRI (2004 to 2005). Differences in COMET employing MVIRI and SEVIRI might still be
present at locations where synoptic observations are not available (e.g., ocean regions). Therefore,
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a more extensive comparison of monthly mean MVIRI- and SEVIRI-based CFC was carried out during
2005 at the 1° x 1° resolution within 60°N/S-60°W /E.

Over all grids, CFC from MFG is on average 0.43% lower than CFC from MSG (Table 4).
A similar difference is revealed for January, whereas for June the mean difference is close to 0%.
Yet, the differences are not equally distributed in space. For both months, MSG CFC is 5-10% greater
than MFG CFC at the Arabian Sea (Figure 7c,d). Concurrently, close to the African coast around
10°5-20°S (a region of tropical marine stratocumulus), MFG CFC has up to 25% larger values in
June than MSG. Unfortunately, these differences in ocean regions can neither be evaluated against
synoptic observations, as these are not available, nor against CALIPSO/CALIOP launched only
in 2006. Therefore, COMET must be used with caution when analysing cloud cover in a tropical
marine stratocumulus area where climate models have been shown to have difficulties in simulating
the magnitude as well as the variability of albedo.
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Figure 7. Comparison of COMET CFC monthly means (0-100%) of 2005 derived from Meteosat First
Generation (MFG) and Meteosat Second Generation (MSG). Upper panels present COMET MFG
(a) and COMET MSG (b) annual means. Lower panels show a difference bewteen COMET MFG and
COMET MSG for January (c) and June (d).

Table 4. Comparison statistics of gridded CFC derived by Meteosat First Generation (MFG) and
Meteosat Second Generation (MSG) for 2005.

N MBE bcRMSE

MFG—MSG (all months) 153,384 —043  2.26
MFG—MSG (January) 12,782 —050  2.33
MFG—MSG (June) 12,782 0.04 2.63
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6. Validation with CALIPSO-CALIOP

The validation against CALIPSO/CALIOP was performed for the entire year of 2010. It required
the spatial and temporal matching of observations from SEVIRI (used in COMET for 2010) and CALIOP.
Collocations were computed using spatial nearest neighbour search and scan line-based time matching.
Maximum collocation distances were 5 km and 7.5 min in space and time.

Due to the advanced lidar technique, CALIOP is much more sensitive to high and optically
thin clouds than SEVIRI. Therefore, not only did we compare COMET against the uppermost cloud
layer detected by CALIOP, but also against CALIOP data filtered by means of the cloud optical
thickness (COT). The latter can tell us more about how accurate COMET is relative to the potential of
the SEVIRI sensor.

We derived two binary CALIOP cloud masks by interpreting CALIOP measurements with total
column COT > 0 and COT > 0.2 as cloudy. To be comparable with CALIOP, COMET CFC was
converted to a binary cloud mask by setting CFC > 55% to cloudy and CFC < 55% to clear sky.
CALIOP cloud mask of COT > 0 is expected to contain thin clouds which are more likely to be missed
for COMET due to the sensitivity of the SEVIRI sensor. Thus, the threshold used for the second cloud
mask (COT > 0.2) should improve the agreement of COMET and CALIOP. Cloud detection sensitivity,
defined as the minimum cloud optical thickness for which 50% of clouds could be detected, is 0.225 for
AVHRR as recently estimated by Karlsson and Hakansson [47]. This is close to the threshold applied
in our evaluation.

Figure 8 shows a time series of the cloud fraction from COMET and CALIOP at all collocations
in 2010. Meteosat underestimates CFC as compared to CALIOP (COT > 0.0) and overestimates as
compared to CALIOP (COT > 0.2). The underestimation is expected as a passive sensor reveals
lower sensitivity to thin clouds. The fluctuation of MBE revealed at the bottom panel of Figure 8
needs to be further investigated. The following Table 5 summarizes the performance of COMET
over all collocations (denoted as All), as well as for different subsets related to light conditions and
land—ocean mask. Averaged over all months and collocations, COMET bias is of —9.99% which is
within the threshold requirements. Probability of cloud detection is consistent above 70% for all
subsets. However, COMET has a higher probability to incorrectly detect clear sky during night-time
(FAR; = 34.13%) compared to daytime (FAR, = 30.24%). Yet, MBE (in absolute terms) is lower for
night-time observations. Cloud detection is very similar in terms of accuracy and precision over land
and sea.
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Figure 8. Five-day moving average of COMET and CALIPSO cloud mask (yielding a cloud fraction,
top) and a difference between both (bottom).
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Table 5. Summary of validation results for the COMET-based cloud mask against CALIOP. ‘Clr’ stands
for clear, and ‘cld” for cloudy. Day/Night threshold is at a solar zenith angle of 80 degrees. All values
in percent (0-100).

CALIOP COT > 0.0 CALIOP COT > 0.2
All Day  Night Sea Land All  Day Night Sea Land

PODclr 86.38 88.20 84.37  85.64 88.12 80.18 8146 7876 79.06 82.29
FARclr 3210 30.24 3413 3178 3255  11.88 939 1461 12.01 11.59
PODcd 7631 75.55 7701 77.57 7375 88.60 89.75 87.63 89.10 87.55
FARcld  9.38 9.08 9.64 9.55 9.05 19.08 20.07 1820 19.19 18.93
Hitrate  80.01 80.48 79.55 8041 79.23 8428 8520 8338 84.06 84.73

KSS 62.70 63.75 61.38  63.03 61.87 6879 7121 6639 6816 69.84

MBE -9.99 -1031 -9.68 -—-9.11 -11.69 4.62 554 3.72 5.10 3.71
bcRMSE  43.58 42.96 4418 4331 44.04 39.38 38.07 4059 39.60 38.90

We also analysed the impact of excluding clouds with COT smaller than a certain threshold from
the CALIPSO-based cloud mask. In Figure 9, the probability of detection increases with the COT
threshold used to distinguish clear and cloudy CALIOP measurements. However, it does not imply
that optically thinner clouds than, say COT = 0.1, cannot be detected by SEVIRI, because the false
alarm ratio also increases with the COT threshold. It is more likely to miss a cloud with SEVIRY, if it is
optically thin. Thus, there are two effects happening simultaneously when increasing the CALIOP COT
threshold (Figure 9). First, optically thin CALIOP clouds not detected by SEVIRI are reset to cloud-free,
hence the cloud POD increases. Second, optically thin CALIOP clouds detected by SEVIRI are reset to
cloud-free, leading to an increased False Alarm Ratio. The coupling of these effects causes the Hitrate
and KSS to peak at COT of 0.15.
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Figure 9. COMET cloud scores as a function of the COT threshold used to discriminate clear and
cloudy CALIOP observations. KSS denotes the Hanssen—-Kuiper’s Discriminant.

The contribution of different CALIOP cloud types to the probabilities of cloud detection are
shown in Figure 10. It should be noted that cloud analyses with respect to the CALIOP cloud type
have a very strong ice cloud bias. It is found that CALIOP provides a cloud type classification for 98%
of the ice clouds, but only for 30% of the liquid clouds.

Altostratus and deep convective clouds are detected with almost 100% probability by COMET,
and Altocumulus almost reaches the precision requirements of 90%. Cirrus clouds narrowly miss
the threshold requirements. However, when ignoring CALIOP measurements with total column
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COT < 0.2, Cirrus detection meets the target requirements. Transition Stratocumulus clouds are
detected with a probability of 60% for COT > 0.2. Concurrently, only 20% of low, broken Cumulus
clouds are detected regardless a threshold for COT. However, the occurrence probability for this
cloud type is two orders of magnitude lower than, for example, Cirrus clouds. Low Broken cumulus
especially in ocean areas (see POD in Figure 11) have a similar thermal signature as the underlying
water with little spatio-temporal variance to be exploited, especially during night-time when COMET
only uses the single thermal channel. The Bayesian classifier of COMET was trained with SYNOP sites
which might not adequately represent this cloud type over oceanic areas.
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Figure 10. Probability of detection for COMET cloud mask resolved by cloud type. The cloud type
is taken at the CALIOP cloud layer where the top-to-bottom integrated optical thickness exceeds 0.2.
Blue bars were computed by interpreting all CALIOP measurements with total column COT > 0 as
cloudy. Light-blue bars were derived using COT > 0.2 as cloud criterion. Grey bars give the number of

matchups by cloud type.

CAL. COT >0

CAL. COT > 0.2

Figure 11. Mean annual CFC of Meteosat and reference CALIOP, and skill scores derived for COT > 0
(first row) and COT > 0.2 (second row).

Figure 11 presents COMET performance statistics over Meteosat disc remapped to a regular
1.5° x 1.5° grid. Mean annual COMET and CALIOP CFC (with COT > 0) reveal similar spatial
patterns, however with COMET underestimating CALIOP over the Atlantic Ocean within 0-10°N as
well as for the tropics over Africa. This can be explained by a significant contribution of Cirrus
clouds (in the tropics) and broken Cumulus clouds (over the ocean), which can be missed by
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COMET. This underestimation is indeed no longer visible when CALIOP CFC is estimated using
COT > 0.2, thus excluding optically thin clouds. Probability of detection exceeds 90% over large areas,
i.e., Northern and Southern Atlantic Ocean, South America, Europe and South Africa. Two main spots
of lower POD are located over the Atlantic Ocean around 10°S-0°, Western Indian Ocean, as well as
over desert (Sahara and Arabian Peninsula).

7. Intercomparison with Other Satellite Datasets

Figure 12 reveals COMET’s closest correspondence to SYNOP among all intercompared datasets.
The MBE of COMET is —0.14% while the majority of others exceeds 2%. The MBE of PATMOS-x is
as low as —0.18%, but it has to be noted that only collocations (of time difference below 10 min) of
instantaneous level-2 COMET and PATMOS-x observations were aggregated to monthly means, while
the other intercomparisons are based on level-3. Moreover, the stability of COMET’s MBE over time
appears to be best when compared to other long-term climatologies of PATMOS-x, CLARA-A2 and
CC4CL-AVHRR-PM.
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Figure 12. Time series of monthly (a) and aggregated to yearly (b) mean bias error of COMET and
intercompared satellite-based CDR as compared to synoptic observations at 237 sites. Values in brackets
on panel (a) indicate mean MBE for the whole analysed period.

All datasets including COMET perform best for summer months. However, COMET has inversed
annual seasonality of MBE with a negative bias in winter and a positive one in summer. So, while
traditional remote sensing cloud cover datasets often falsely identify snow surfaces as clouds, COMET
underestimates cloud cover above bright and cold surfaces. COMET utilizes relative differences
between the all-sky and clear-sky solar and thermal signal. These differences are low for cold and
snow-covered surfaces and also for low stratus clouds which occur during winter time in continental
Europe. Explicitly sharpening the Bayesian classifier of COMET for these situations might yield a
lower bias during Northern Hemisphere winter months. As already shown in Table 3, this is also
related to underestimation during daytime and twilight, with most negative MBE in the tropics.
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When all CDRs are compared over the whole Meteosat scanning area, COMET reveals similarity
to AVHRR-based records CLARA-A2, CC4CL-AVHRR and PATMOS-x (Table 6). In both cases,
COMET detects around 4-5% less clouds. Spatial distribution of the differences is similar for both
comparisons (Figure 13b,d). CLARA-A2 and CC4CL-AVHRR CFCs are greater than COMET’s for
most of the Meteosat disc with maxima close to the African coast around 10°-20°S (a region of tropical

marine stratocumulus).
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Figure 13. Differences of COMET versus CLAAS-2 (a), CLARA-A2 (b), MODIS (c), CC4CL-AVHRR
(d) and PATMOS-x (e) monthly means (in CFC 0-100%) for 2005 at 1° x 1° over Meteosat disc. Panel
(f) presents annual (2005) zonal mean differences in cloud fractional cover between COMET and
intercompared datasets.

Differences of COMET versus MODIS and CLAAS-2 are larger (Table 6). COMET underestimates
MODIS and CLAAS-2 by 8% and 10%, respectively. In both cases, there is a tendency to COMET’s
overestimation over land (Africa) and underestimation over the Ocean (Figure 13a,c).
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Table 6. Evaluation of COMET versus CLAAS-2, CLARA-A2, MODIS, CC4CL-AVHRR and PATMOS-x
for 2005 averaged over the Meteosat disc.

N MBE bcRMSE

COMET—CLAAS-2 158,508 —9.99 11.85
COMET—CLARA-A2 158,508 —4.03 6.41
COMET—MODIS 158,424 —8.17 10.21
COMET—CC4CL-AVHRR 158,508 —4.78 7.51
COMET—PATMOS-x 158,508 —5.69 7.14

8. Conclusions and Outlook

The recently released CM SAF cloud fractional cover climate data record (COMET) derived from
MVIRI and SEVIRI on board two generations of geostationary Meteosat satellites has been presented.
Our study demonstrates that two Meteosat heritage channels (i.e., broadband visible and thermal)
allow for cloud fractional cover estimates at native sensor resolution of older MVIRI sensors (i.e., every
30 min at 5 km resolution) that fulfil high requirements defined by the climate community. As compared
to synoptic observations, COMET with —0.15% of mean bias error and 7.04% of bias-corrected root
mean square error complies with GCOS’ optimal requirements. However, COMET CFC reveals lower
performance during night-time (when only thermal information is available) as well as for high
viewing angles (i.e., beyond approximately 55 degrees). Further, our evaluation exposes limitations of
cloud detection in winter months (December—February). Still, COMET CFC reveals optimal temporal
stability (trend in bias) of —0.94% per decade, which is best among the analysed long-term CFC climate
data records (i.e., CLARA-A2, and CC4CL-AVHRR-PM).

COMET’s excellent performance builds on new intercalibrations of Meteosat heritage channels as
well as a novel cloud detection methodology. The fundamental climate data records (i.e., time series
of intercalibrated radiances and brightness temperature) have been carefully developed with the
stable HIRS measurements as a reference for MVIRI WV and IR. A major novelty of the COMET
cloud detection method is the modelling of clear-sky background fields using the Meteosat data itself,
and not using the external auxiliary data. It exploits the high temporal resolution of geostationary
sensors in a parametric analysis of the clear sky diurnal cycle instead of dealing with each time step
separately. A second novelty is an application of continuous cloud mask scores that are used to derive
CFC by means of a machine learning approach (naive Bayesian classifier). The classifier is trained
towards synoptic observations, which guarantees a good correspondence of COMET CFC and SYNOP.
We claim that our satellite retrievals can complement or replace the synoptic observations with a huge
advantage of being available at every grid point and with high frequency.

It is planned to extend COMET for the second edition with precedent years (1983-1990) covered
by MVIRI sensors on board Meteosat-2 and Meteosat-3 upon the availability of new intercalibration
coefficients, and prolonged with the period 2015-2021. The algorithm should then be improved to
solve the limitations pinpointed in this study (e.g., inhomogeneity 1995/1996, cloud detection over
snow and at coastal zones). In addition, a training set which consisted of synoptic observations on
land, could be enhanced with global data of CALIPSO/CALIOP [47]. Further, the new release should
follow the metrological norms on providing uncertainties of climate variables [48].

The COMET data record provides information on cloud occurrence which is indispensable
for Meteosat-based derivation of other climate variables released by CM SAF, i.e., Land SUrface
Temperature dataset from METeosat First and Second Generation (SUMET, https://doi.org/10.5676/
EUM_SAF_CM/LST_METEOSAT/V001). It also provides data that allow for climate analysis of trends
and variability of cloudiness and its daily cycle in the last three decades (e.g., [49]). Notwithstanding,
COMET CEFC can be of interest to a broader community than satellite data producers and climate
scientists only. This includes anyone requiring high temporal resolution cloud fraction estimates as
input for further studies, for example, in the domains of model data assimilation, solar energy, ecology
or tourism.
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Abbreviations

The following abbreviations are used in this manuscript:

AVHRR Advanced very-high-resolution radiometer

bcRMSE Bias-corrected Root Mean Square Error

CALIOP Cloud-Aerosol Lidar with Orthogonal Polarization

CALIPSO Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation
CC4CL The Community Cloud Retrieval for Climate

CEC Cloud Fractional Cover

CLAAS CM SAF CLoud property dAtAset using SEVIRI

CLARA CM SAF CLouds, Albedo amd RAdiation Dataset from AVHRR data
cld cloudy

clr clear-sky

CM SAF Satellite Application Facility on Climate Monitoring

COMET CM SAF ClOud Fractional Cover dataset from METeosat First and Second Generation
COT Cloud Optical Thickness

ECMWF European Centre for Medium-Range Weather Forecasts

ECV Essential Climate Variable

EUMETSAT  European Organisation for the Exploitation of Meteorological Satellites
FAR False Alarm Ratio

FCDR Fundamental Climate Data Record

GCOs Global Climate Observing System

IR Infrared channel

ISCCP International Satellite Cloud Climatology Project
KSS Hanssen-Kuiper’s discriminant

MBE Mean Bias Error

MFG Meteosat First Generation

MODIS Moderate-resolution imaging spectroradiometer
MSG Meteosat Second Generation

MVIRI Meteosat Visible and Infrared Imager

NOAA National Oceanic and Atmospheric Administration
NWP Numerical weather prediction

OSCAR Observing Systems Capability Analysis and Review Tool
PATMOS-x  Pathfinder Atmospheres Extended

POD Probability of Detection

SARAH Surface Solar Radiation Data Set - Heliosat

SEVIRI Spinning Enhanced Visible and Infrared Image
SNHT Standard Normal Homogeneity Test

SYNOP Surface synoptic observations

SZA Satellite Zenith Angle
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TCC Total Cloud Cover

UNFCCC  United Nations Framework Convention on Climate Change
VIS Visible channel

VZA Viewing Zenith Angle

WMO World Meteorological Organization

WV Water-Vapor absorption channel

Appendix A. Performance and Homogeneity Measures

Appendix A.1. Performance Statistics

Given that Ej is the COMET CFC and M is the CFC from reference SYNOP or the intercompared
satellite-derived data record, for the time step k, and 7 is the length of the time series, the performance
statistics are defined as:

Mean bias error: MBE = % Y1 (Ex — My)
Bias-corrected root mean square error: bcRMSE = \/ Ly (Ex— Mg — MBE)?

The skill scores are defined for the contingency matrix (Table A1) following [50]:

Probability of (cloud) detection: POD4q = 100 - ; + -
Probability of (clear-sky) detection: POD, = 100 - ;1 + 5
False alarm (of cloud) ratio: FAR4 = 100 - ; +b

False alarm (of clear-sky) ratio: FAR , = 100 -

Hit rate: HitRate = 100 - %

Hanssen—Kuiper’s discriminant: KSS = 100 - %

If not specified cloudy or clear, POD and FAR refer to the probability of (cloud) detection and
false alarm (of cloud) rate, respectively.

Table Al. Contingency matrix for the Meteosat-based cloud mask and reference synoptic or

CALIPSO observations.
Reference Cloud Mask
Cloudy Cloud-Free Total
Cloudy a b a+b
Meteosat cloud mask
Cloud-free c d c+d
Total a-+c b+d N

Appendix A.2. The Standard Normal Homogeneity Test

The Standard Normal Homogeneity Test (SNHT) looks for inhomogeneities in a time series.

It derives a statistic T(k) where changes in the standardized mean before and after each step

(i.e., months in this study) are calculated. Large difference between the mean values before and after

a time step indicates a possible break in a time series. Following [51], statistic T(k) for time step k
is defined as:

T(k) =kz2+ (n—k)35;k €1,2,3,...,n. (A1)

The standardized means z% and Z% are calculated as:

'~<|

Nl

(A2)

1k
%2
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n—k ._Z o’ (A3)

where Y; stands for the value at a time step 7, Y for the mean, and ¢ for the standard deviation of the
whole time series.

A large difference between the mean value before (1) and after (z») the time step k leads to high
values of T(k). Khaliq and Ouarda [52] provided critical values of T (k) depending on n which signifies
a break in a time series at several confidence levels. In this report, for n = 300 (25 years x 12 months),
we employed the critical value of 10.02 for the 95% confidence level.
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